Dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles are only a few of the nanodrug systems that have been produced so far for diverse routes of administration. Pharmaceutical compounds' effectiveness, safety, physicochemical qualities, and pharmacokinetic/ pharmacodynamic profile have all been improved using nanodrug systems. Functionalized nanodrug systems, in example, can improve the bioavailability of orally administered medications, extend the half-life of injectable pharmaceuticals (by lowering immunogenicity), and deliver drugs to specific tissues. As a result, nanodrug systems might reduce the frequency of administration while maximising pharmacological benefits and minimising systemic adverse effects, thereby improving treatment compliance and clinical results. Despite these appealing pharmacokinetic benefits, nanodrugs' hazardous potential has recently been highlighted, since they frequently demonstrate cytotoxicity, oxidative stress, inflammation, and genotoxicity in vitro and in vivo Red Blood Cells (RBCs) have recently inspired a new technique for producing biomimetic nanoparticles. Using membrane components produced directly from RBCs, this approach disguises drug nanocarriers as self. This approach has been shown to extend the half-life of particles in the systemic circulation beyond that of PEGylated systems. For the creation of effective nanodrugs with high therapeutic potential and a large safety margin, a greater knowledge of the pharmacokinetic and safety features of nanodrugs, as well as the constraints of each delivery strategy, is required. This study discusses current advances in nanodrug system development, with an emphasis on pharmacokinetic benefits and safety concern